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ABSTRACT 

 

An early warning system (EWS) has the possibility to predict data accurately in the limited positions of 

units using sensors and additional data input. But in reality it is not easy, requires a lot of system, cross 

platform and field of science. This applies tries to realize the EWS, so it is necessary to configure the 

addition of input data, where data from sensors and meteorological data is required to predict floods 

accurately. The purpose of this system is to make decisions and determine the flooding area. In order to 

achieve this goal, Decision Support System (DSS) techniques with primary and secondary data are applied. 

Primary and secondary data as input of Fuzzy Multiple Attribute Decision Making (FMADM) algorithm. 

The expectation is based on weight, normalized model to get optimal prediction result. The EWS equipped 

by sirens, short messages, websites, and also Android apps to provide monitoring and prediction 

information.  The experiment was carried out using EWS hardware mounted on streams and the results 

indicated the good performance of the system with fulfill errors. 

Keywords: flood area predicting, FMADM, DSS, meteorological data, early warning system. 

 

1. INTRODUCTION 

In the last decades, early warning system (EWS) 

is become an important role as alerting system for 

the human life, particularly who live near the river 

or the coastal area. To obtain a better alerting 

system, it has to be equipped with prediction 

facility and decision support system (DSS) to 

improve the capability. However, the existing 

system does not have those facilities, so the alerting 

information has delay time. Due to this, a lot of 

damage will occur and the disaster cannot be 

avoided. According to [2], [3], several types of 

prediction methods have been employed on the 

EWS. One of the popular prediction methods uses 

monitoring and sensor network due to more secure 

and more accuracy. In fact, those prediction 

methods are very expensive and cannot be applied 

[4].  

One of the ways to do predictions can be done 

through the DSS. The DSS is a decision search 

technique for optimal decision based on variable 

factors with selected algorithms [6], [7]. This has 

been applied in the previous study in monitoring 

system to determine the cause of floods [8], [9]. 

This technique makes EWS more flexible in the 

ability to predict flood time through the addition of 

geo-social media data input [10] but data obtained 

from the public is sometimes inaccurate. One 

important advantage of DSS and secondary data is 

the non-invasive technique associated with the 

environment because it does not require a large 

number of EWS units [11]. Another advantage of 

this system is a smaller data error than sensor 

networks. 

In order to apply the DSS to the desired EWS 

application, it is often necessary to criteria, ratings, 

matrix norms, weighting and ranking results. 

Determining the criterion aims to analyze factors 

and look for alternatives [12]. However, the 

determination of these criteria is difficult to choose 

because of relationships that are subjectivity [13]. 

Previous researchers have used a secondary data 

approach; geo-social media to determine weather 
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forecasts [14] and methods of smart adaptation 

activities [15] this technique is limited by the 

expensive cost. In today's work, many researchers 

have used artificial intelligence (AI) approaches 

such as fuzzy logic, artificial neural networks, and 

heuristic algorithms that adopt the behavior of the 

human brain [16]. 

The artificial intelligence is the parent of the DSS. 

In flood prediction the utilization of DSS requires 

additional data. The field data (main), 

meteorological data and old data (secondary) can be 

used as EWS input [17]. The use of DSS and 

secondary data does not require data training like 

some other algorithms. In contrast, sensor and 

meteorological retrieval opens more and more input 

variables and correlates with decision accuracy [18]. 

These variables are likely to be solved by DSS 

through a usable alternative algorithm; FL, 

TOPSISS, IRR, AHP, FMADM, ELECTRE, and 

the like so as to have their respective weaknesses 

and advantages [19]. Work that needs to be realized 

is to connect between EWS, prediction using DSS, 

and algorithm web processing information system 

in one system. 

This paper presents a method for integrating it; 

DSS functions, meteorological data, and water level 

sensor data into the EWS system to predict the 

impact of flood areas in the watershed. We assume 

the DSS structure with the FMADM algorithm with 

simple additive weighting (SAW) completion is 

sufficient to implement. Criteria (Cj) and alternative 

functions (Ai) are divided into 7 and 4 respectively. 

Next to adjust the match rating table is made, 

followed by normalization of the matrix. Weights 

based on the analysis of the variables are given, 

then the end result can be presented [20]. The given 

DSS output is sent to EWS hardware and the result 

will be divided into Normal, Standby-3, Standby-2, 

and Standby-1 decisions. Each level has its own 

actions that will trigger the siren and SMS gateway. 

The rest of this paper is structured as follows. 

The second section part of the summary of the EWS, 

determining the type of weight and calculation is 

also elaborated. The third section describes the 

results and experimental discussions. Finally, a 

conclusion is presented in section 4. 

2. PREDICTION USING FMADM AND 

METEOROGICAL DATA 

In this study, the EWS is done using the 

FMADM algorithm shown in Fig. 1. The water 

level sensor is connected to the embedded system 

through the ADC port as the main data input. While 

secondary data from meteorology agency inputted 

through the website. The website serves to run the 

FMADM algorithm, displays data, and sends it 

back to the EWS via a GPRS connection. Surface 

water sensor uses Sharp-GP2Y0A02YK0F with 

buoys shielded by 4-inch diameter pipe mounted 

perpendicularly. Other input data sourced from 

Indonesian Meteorological Agency [21] is used as 

FMADM input through various variables, for 

example; relative humidity, wind speed, wind 

direction, rain duration, and rainfall intensity. Then 

all variables are combined including the river level; 

conducted matching criteria and alternatives to 

obtain decision option using FMADM algorithm.  

Data from the website is feedback to the EWS 

which will translate into the status category 

Standby-1, Standby-2, Standby-3, and Normal. The 

Android app is called to facilitate access to public 

information through the concept of mirror website. 

Each status by the embedded system is translated to 

execute commands such as; sending SMS and 

turning on the siren hazard.  

Therefore, EWS works on three lines of 

communication; 1) sending raw data for processing 

with additional meteorological data to the website, 

2) then sent back to EWS, and 3) finally sending 

SMS and/or siren hazard commands. In this paper, 

EWS with meteorological data is solved by 

FMADM with detailed descriptions of each section 

of the system described in the following sections. 

2.1 FMADM based Predicting 

FMADM tries to make decisions in a manner 

similar to the human brain. Therefore, FMADM is 

weighted and compared to each other and will 

eventually form a sorting pattern. No longer 

ordering according to the number of attributes, but 

already based on matching criteria (Cj) and 

alternative (Ai) that were first normalized [22], [23]. 

The alternatives are A1 = Standby-1,  A2 = Standby-

2,  A3 = Standby-3, and Normal. 

In order to use many attributes it is necessary to 

draft a decision that meets FMADM algorithm. 

Please note the completion steps. Determine the 

criteria that will be used as a reference in the 

decision decision in an alternative disaster decision 

[24]. Criteria are derived from an empirical 

environmental analysis. The criteria used in the 

determination of flood decisions, among others; 

C1= river level, C2 = relative humidity, C3 = wind 

speed, C4 = wind direction, C5 = rain duration, and 

C6 = rainfall intensity. 

The above conditions have 4 alternatives and 9 

criteria related to the prediction of potential floods. 

Criteria value grouped into primary and secondary 
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data; C1 as primary data while data C2-C6 as  

secondary data. Each criteria is assigned a different 

weight (W) based on empirical analysis, 

calculations and mathematical patterns according to 

geophysical studies [25], [26]. 

In theory, FMADM can be solved with simple 

weighting. A simple addictive weighting (SAW) is 

used to complete the algorithm. The basis of the 

SAW method is to find a weighted sum of 

performance ratings on each alternative on all 

attributes [27]. The SAW method requires the 

process of normalizing the decision matrix (X) into 

a scale comparable to all existing alternative values 

in Eq. 1. 

 ….(1) 

where rij is the normalized performance rating of 

the alternative Ai on the attribute Cj; i = 1,2, ..., m 

and j = 1,2, ..., n. The index j will be worth a profit 

if the value of j increases and the profit increases, 

and vice versa j will be worth the loss when the 

value j rises but the profit is reduced [28]. The 

preference value for each alternative (Vi) is written 

like in Eq. 2. 

 

   ….(2) 

    

Continued match rating of each alternative on 

each criteria (X). The normalization matrix (R) is 

based on the equation adjusted to the attribute type 

(attribute gain or cost) to obtain a normalized 

matrix based on Eq. 2. Furthermore, after obtaining 

an alternative-criterion matrix rating (X), then 

normalized the matrix (R) based on the equation 

adjusted to the type of attribute (profit or cost) so as 

to obtain a normalized matrix [29] following Eq.3. 

 

  …. (3) 

If the value of R has been obtained, then 

followed with the weighting process (W). The W is 

given by the decision maker through the previous 

analysis, as in Eq. 4. The value of T for C1 and so 

on until C6 in this condition the magnitude of fuzzy 

weighted value will serve as a multiplier. 

 

 …. (4) 
 

The value of W acquired at weighting is used as a 

numeratorial factor for the final result (Vn). The Vn 

is equaried  from the summing process of the 

matrix multiplier (R) multiplied by weight. 

Consider the following Eq. 5. 

 

  

  

 
   

   …. (5) 
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Looking for the greatest value of the final result 

(Vi) from Eq. 5, the maximum value obtained is the 

best alternative (Ai) and as a solution as a solution 

[30]. For example the maximum value obtained is 

V3, then the appropriate decision alternative is A3.  

 

2.2 Meteorological Data based Predicting 

In Indonesia, official meteorological data are 

issued by the government through the Meteorology, 

Climatology and Geophysics Agency (BMKG) -

Indonesia. Based on meteorological parameters, 

observed data include C2 = relative humidity, C3 = 

wind speed, C4 = wind direction, C5 = rain duration, 

and C6 = rainfall intensity are as secondary data. In 

order to predict the flood properly, all variables in 

C1-C6 must be set to the degree of fuzzy 

memberships. To do so, apply Eq. 6 to determine 

the fuzzy membership of each variable C.  

 

  ….(6) 

 

Before Eq. 6 is applied, each variable C will be 

searched for categories based on BMKG-Indonesia 

standard with modifications with various standards 

and other scientific considerations. There are 

several categories after being grouped as in Table 1. 

Table 1: Classification of All Criterions for Each Variable. 

Variables Categories 

C1 (river level) 
low 

(< 200 cm) 

middle 

(210 – 400 cm) 

high 

(> 400 cm) 

C2 (relative humidity) 
low 

(0-33%) 

moderate 

(34-66%) 

high 

(67-100%) 

extreme 

(>100%) 

C3 (wind speed) low moderate high extreme 

C4 (wind direction) 
N 

337,5°-

22,5° 

NE 
22,5°-

67,5° 

E 
67,5° -

112,5° 

SE 
112,5°-

157,5° 

S 
157,5°-

202,5° 

SW 
202,5° 

-247,5° 

W 
247,5°-

292,5° 

NW 
292,5°-

337,5°  

C5 (rain duration) 
short 

(≤ 60 min.) 

middle 

(61-120 min.) 

long 

(>120 min.) 

C6 (rainfall intensity) 
light 

(≤ 2 mm/h) 

moderate 

(2-14 mm/h) 

heavy 

(15-59 mm/h) 

very heavy 

(30-60 mm/h) 

torrential 

(> 60 mm/h) 

      

 
Figure 2: Block diagram layers on EWS with FMADM 
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After we knew the number of classification as in 

Table 1, it can be determined fuzzy memberships 

for each criterion. Each criterion has different fuzzy 

memberships. In this experiment membership is at 

least three categories and a maximum of eight 

categories. 

The process of making fuzzy memberships are 

used as the basis of FMADM which will be solved 

using Eq. 1 and 2. So it can be asserted that the 

result of Table 1 is not used for the prediction 

process, either Fuzzy Mamdani or Fuzzy Sugeno. 

The flood prediction is done by weighting process 

as in Eq. 4 [31]. 

 

2.3 Early Warning System 

Early warning systems can use the following 

methods to assess stability assessments: data-driven 

methods for anomaly detection, machine learning, 

statistical methods, [32] empirical data failure 

analysis and so on. Therefore, not common enough 

to be relied upon on the design of EWS in general 

[33]. Similarity, once EWS is generated and 

applied; a series of actions taken e.g. village 

headman send SMS manually. This pattern is the 

old way while the more advanced way is applied to 

this EWS. As in the flow diagram in Fig. 2, that all 

work is done automatically by the system. 

According to Fig. 2, primary and secondary data 

are very important in the flood prediction process. 

The reception of data from the web server to the 

EWS consists of the following steps: First, when 

powered on, the EWS initializes the water level 

sensor and GPRS module and then sends the water 

level sensor data to the web server. Second, the 

calculated data with secondary data via FMADM is 

sent to the EWS as an input. The incoming data is 

matched to find one of four conditions. Third, the 

condition results will execute the automatic sending 

back to webserver, message delivery command 

and/or turn on hazard siren. Finally, the repetition is 

done from the first step to the third to get the data 

continuously, in order to take real time data. In this 

study the secondary data obtained from BMKG 

Indonesia which is forwarded to the website system. 

 

3. EXPERIMENTAL RESULTS 

In this section, several experiments were 

conducted in the FMADM method for flood 

prediction. Flood prediction is calculated from 

primary and secondary data. Primary data delivery 

interval (C1) and secondary data (C2-C6). Primary 

data is sent every 15-25 second interval, while 

secondary data is sent every 60 minutes. Then the 

calculation process based on FMADM is done on 

the website and the results are sent back to the 

EWS hardware. Fig. 3 illustrates the experimental 

area of the EWS. 

 

3.1 Experiment 1: Calculate FMADM to Making 

Decisions 

Before the system is implemented, it is 

necessary to experiment by entering Equation 4. 

Although categorization has been established by 

BMKG-Indonesia standard and geophysical study, 

test still required. The test is done in 3 times, based 

on Eq.4 to find the most appropriate weighting 

composition before program is written into 

Hypertext Preprocessor (PHP) for the web server. 

Performed a calibration process to find the 

proper weighting of some weighting options. This 

calibration process is done by taking data on 

website [34] and meteorological data and then 

check the condition of the field to ensure the 

empirical conditions in real location. For calibration 

data is used on December 20th, 2017. 

 

Table 2: Match between Alternatives and Criteria. 

Alt. 
Criterions 

C1 C2 C3 C4 C5 C6 

A1 30 10 40 80 30 50 

A2 24 20 30 60 25 40 

A3 17 30 20 40 20 30 

A4 11 40 10 20 15 20 

 

Look at the Table 2; if the value assigned to 

each alternative and criteria as a match value, then 

the greatest value is best. Through the analysis and 

consideration of the process of giving preference 

weight (W) to C1-C6. In this experiment we 

performed five weights, where the weighting with 

good predictions will be used in experiments 2 and 

3. 

 

 

 

 

 

 
 

The result of decision matrix is formed from match 

table as follows; 
 

 
 

Furthermore, the matrix normalization result (R) 

based on the alternative-criterion matching rating 

table (X) is adjusted to the attribute type of r11 to 

r46; 
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Then get the normalized matrix (R): 
 

 
 

Continued by ranking the final result (V) by 

summing the first line V1 to V4 of the heavy 

product (W1) with R as follows; 

 

 

 

 

 
 

In the same way, rate W2 to W5, with the following 

results. 

 

for W2: 

 

 

 

 
 

for W3: 

 

 

 
 

 

for W4: 

 

 

 

 

for W5: 

 

 

 

 

 

The decision result of V1 to V4 is found that each W 

will have proximity to the disaster level map that 

has been plotted according to Stanby-1, Stanby-2, 

Stanby-3, and Normal status. Based on Figure 3, 

the weighted calibration (W) is very close to the 

real condition of W2 with a tolerance of 15%. 

 

 
Figure 3. Area of the EWS in Bengawan Solo Watershed Surakarta  
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3.2 Experiment 2: Implementation of FMADM 

on EWS  

After obtaining calibration by matching the 

result of weighting with empirical parameters. The 

EWS will interpret any data sent from the server to 

the hardware as in Figure 2. First, take the primary 

data from the water level conditions on the 

riverbanks and at the same time take secondary data 

from the BMKG site. Furthermore, primary data 

and secondary data are processed using FMADM 

algorithm. Delivery of data at 25-second intervals 

for sending via TCP/IP to remain valid. Finally, the 

received data is sequenced to determine the 

condition of the status level of the Bengawan Solo 

watershed. 

Detailed implementation of FMADM algorithm 

applied to EWS can be illustrated as Figure 4. 

Gradually work, hardware developed with the 

FMADM algorithm is divided into three parts. First, 

the reading of data input, starting from the system 

initialization followed by displaying information to 

the secondary data summing process of the web 

server and the primary water level sensor. The 

second stage is the filtration stage in which the 
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incoming data (secondary and primary) are 

classified into which parts correspond to the four 

specified statuses. The last stage is the execution of 

the screening process, each decision data will be 

accompanied by execution for example; sending 

reply data to the web server, flood status, sending 

SMS to the listed number (stakeholder), and or 

activating flood siren. Inside the hardware needs to 

be underlined. The purpose of setting this interval 

for data sent successfully received by server. 

Because in principle there is an echo received every 

time the data is sent. Figure 5 shows the appropriate 

algorithm and pseudo code flow diagram. On the 

website data is received from hardware, executed 

by the line 7. Because the communication is built 

using GPRS through access TCP/IP then selected 

open-close method. Selected this method to ensure 

that data sent up into database, although this 

method is at risk slightly slower. The total time it 

takes to execute a send subroutine to a host is at an 

 
Figure 7: The Standby-3 Status and 12 Points of Reference of Bengawan Solo Watershed. 
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interval of 12-60 seconds. As shown in Fig. 6, the 

data is displayed in gauge, graphic, table, and 

image of the areas affected by flooding. The data 

displayed on the graph can be traced by time. As 

for the gauge is used to represent the incoming data 

at that time or the latest. Last data in the table also 

has the same function with the graph, but emphasis 

on readability by the user. 

 

3.3 Experiment 3: FMADM Based Prediction  

The dataset of the real weather detection and 

forecasting process is used to test the proposed 

algorithm. The tools used in the process include the 

EWS and website. The general description of the 

dataset can be found in Table 3. The total period for 

271 days is applied continuously with a total of 

8126 tags. The 778 cm water detection rate occurs 

on 31/10/2017 at approximately 3:37 pm. This 

paper will test the prediction accuracy but not test 

the efficiency of the algorithm, because it will be 

done in the next study. 

 

Table 3: Statistics of the Dataset 

Description Number 

Total time period 271 days 

Total number of tags 8126 

Highest peak alarm rate 778 cm 

Num. Standby 1 status 2 

Num. Standby 2 status 101 

Num. Standby 3 status 1862 

Num. Normal status 6161 

 

Accuracy of the proposed algorithm detection 

has been praised from the aspect of detection rate. 

Here is the weighing process chosen based on the 

experiment 1. The accuracy value can be searched 

by comparing the prediction result on the map 

according to real field conditions. In order to know 

the value of accuracy then marked on the map by 

giving the node as a measuring point. The 

difference in the distance on each node to the 

outside is the basis for the assessment of the 

accuracy of each status. The dataset as shown by 

the red shading in Fig. 7 is the FMADM result data 

in Bengawan Solo watershed. 

There are 12 points that become a references in 

Standby-3, the point is determined by geographical 

location. Some points closer to the reference points 

(river bank) or coincide in the image represents a 

high similarity value between predictions compared 

to real conditions. Table 4 shows the flood hazard 

sequence information in each of the selected groups. 

The test is said to be accurate when measuring the 

size that should be measured or capable of 

measuring the actual number. The points A through 

F are on the south-west side while the points G to L 

are on the opposite. It should be noted that points G 

to L are administratively part of Karanganyar 

District, or in other words Bengawan Solo River is 

the geographical boundary. 

Accuracy was obtained from comparing data of 

FMADM result with data on Bangawan Solo 

watershed condition. Measurement conditions are 

measured through GIS Analysis rules with 

buffering and query techniques as applied in Figure 

3. Contrast between FMADM results with real 

conditions then can be calculated accuracy value as 

in Table 4. EWS installed for almost 11 months 

with each accuracy is different, the lowest is 69.7% 

when the sample is taken on 30/09/2017, while the 

highest accuracy when the sample is measured on 

09/12/2017 is 80.1%. Of the total 8126 data entered 

in the database and taken random samples every 

month as table 4, the decision conditions that 

appear are Normal, Standby 2, and Standby 3 while 

Standby 1 does not appear in this sampling. The 

final assertiveness test results show that 76.3% is 

accurate. 

 

Table 4: Results of Accuracy Tests. 

Time Decision Accuracy (%) 
25/04/2017 01:38 Normal 76.8 

10/05/2017 07:22 Normal 78.2 

11/06/2017 12:34 Normal 78.0 

14/07/2017 10:45 Normal 77.6 

10/08/2017 07:57 Normal 79.3 

11/08/2017 08:27 Normal 73.5 

30/09/2017 05:31 Normal 69.7 

09/10/2017 12:20 Normal 75.4 

13/11/2017 07:23 Normal 74.6 

09/12/2017 16:48 Normal 80.1 

04/01/2018 15:03 Normal 76.6 

Total Accuracy (%) 76.3 

 

Anything that appears on the web is the result of 

execution of information from hardware installed, it 

is necessary to perform the area of impact based on 

calculations with the FMADM algorithm. To 

illustrate the watershed impacted FMADM results 

still need to be verified map through buffering 

techniques and queries from geography, so it 

appears as in Figure 8 and 9. The picture shows the 

status of Standby-1, and Standby-2 (Appendix A 

and B). 

The difference between standby-2 and standby-

1 is the increment of puddles in standby-1. There is 

only one area that is not impacted within 100 

meters from the river bank. Such conditions are 

interesting to be observed again. That the distance 

standard is 100 meters specified in disaster 

mitigation actually passes in general when the 
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contours of the land are flat. An example of a 

decision result by FMADM shows that an 

algorithm applied works not only determining the 

outcome but also the process of adopting buffering 

and query techniques from the geographic 

discipline. The process of buffering and query 

obtained the contour of the ground is relatively 

uneven. There are 16 mainland points were not 

flooded for Standby-3 status, then increase in 

Standby-2 to 12 dots. Last is Standby-1 where there 

is only 1 point with height of 111 masl. The points 

A and K in figure Appendix 1 and 2 show a 

significant change from the non-submerged area to 

flood areas. 

The coverage of predicted area is analyzed and 

adapted to the flow pattern. At points A, B, and C 

are factually lower land (90-98 masl) with altitude 

below the contours in that area, 97-110 masl Thus 

the flow pattern will always overflow to the 

mainland as in the yellow area image. The 

prediction process using the FMADM algorithm 

obtained from primary and secondary data can 

predict but the resulting pattern is still static. 

4. CONCLUTIONS 

In this work, the predicted impact and status of 

flood using primary data (sensor) combine with 

secondary data (meteorological data) was 

successfully developed and implemented in a EWS 

using the FMADM algorithm. Based on the 

experimental results, it is concluded that prediction 

using primary and secondary data with the 

FMADM algorithm can achieve a good 

performance and thus can be implemented for 

different applications such as landslide and bridge 

structure. 
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Appendix C: Android Apps of the EWS. 

 

 
 

 

 

 

 

 

 

 

 


